Home Element Metal Potassium

Potassium

What is potassium?

Potassium is a chemical element or silvery-white alkali metal of Group-1 or IA of the periodic table with the symbol K and atomic number 19. It was first isolated by Humphrey Davy in 1807 by the electrolysis of molten potassium hydroxide (KOH) with a voltaic battery. It is extensively involved in different types of biological processes in our life.

Potassium element chemical symbol and periodic table properties

Many compounds of potassium have been used since the early days of human civilization. The large difference between the first and second ionization energy suggests the preferred oxidation number or state of the potassium will be +1.

Properties of potassium

The physical and chemical properties of potassium can be readily understood in terms of its outer electronic configuration. It has only one electron in the s-orbital over a noble gas core. Due to the very low first ionization energy, it loses one electron to form a K+ cation.

Potassium has the largest size among the period-3 elements. The large size and small charge of the cation favored the formation of ionic bonding in the compounds. The small electron affinity and electronegativity also lead to the formation of ionic compounds.

It gives a characteristic violet flame due to easy excitation of the outermost s-electron. This fact leads to the development of analytical chemistry for the estimation of metals by flame photometer. Name, symbol, discovery, and some important properties of the elements are given below the table.

Properties of Potassium
Name Potassium
Symbol K
Name derived from The English word ‘potash’
Discovery Humphry Davy in 1807
Atomic number 19
Atomic weight 39.0983
Common isotope 39K
Electron per shell 2, 8, 8, 1
Electronic configuration [Ar] 4s1
Block s-block
Period period-4
Group group-1
Melting point 63.5 °C, ​146.3 °F
Boiling point ​759 °C, ​1398 °F
Density 0.89 g/cm3
Molar heat capacity 29.6 J mol−1 K−1
Crystal structure body-centered cubic crystal lattice (bcc)
Common oxidation state +1
Electronegativity 0.82 (Pauling scale)
Ionization energy (kJ/mol) 1st 2nd 3rd
418.8 3052 4420
CAS number 7440-09-7

Potassium on the periodic table

The valence shell electronic configuration of potassium [Ar] 4s1. Therefore, it is placed on the s-block of the periodic table with group members of hydrogen, lithium, sodium, rubidium, and francium.

Potassium element or alkali metal found in periodic table with atomic number, symbol, electron configuration

Where is potassium found?

All the alkali metals like Li, Na, K, Rb, and Cs are widely distributed in the earth’s crust of our nature. With the increasing atomic number, the elements become rare. Sylvite (KCl), sylvinite (KCl, NaCl), and Carnallite (KCl, MgCl2, 6H2O) are the most common ores of potassium metal.

Like sodium, K salts are also leached out from the silicon minerals by the action of the weather. The soluble minerals of the metal are called potash. A massive deposit of potash is found in many places of the world like Germany, the United Kingdom, and Canada.

Isotopes

There are 25 known isotopes of potassium but only three like 39K, 40K, and 41K are found in nature. The radioactive isotopes of K have been used as tracers in studies of weathering and medicine.

Production process

Commercial production of potassium by electrolysis of molten KCl is not favored because it is quite soluble in the molten electrolyte and does not float on the top. Commercially, it was prepared by reduction of molten KCl by sodium metal at 850 °C.

The reduction process is rather unusual since K is a better reducing agent than Na but at 850 °C, they are in chemical equilibrium. But higher volatility of K in the temperature range 850 °C to 880 °C, sifts the equilibrium towards the right. Therefore fractional distillation was carried out to obtain the metal.

Interesting facts about potassium

The large difference between the first and second ionization energy of elements suggests the preferred oxidation state of the alkali metals will be +1.

The first ionization energy of potassium is more than the compensated lattice energy for most ionic compounds. Therefore, the major chemistry of potassium is dominated in the form of K+ ions.

Chemical compounds

Potassium hydride

All the alkali metal hydrides are ionic in nature containing H− ion. Potassium hydride is formed by the direct combination of hydrogen with metal at 350 to 600 °C. The cubic crystal lattice, KH is a colorless solid with a reasonably high melting point. On electrolysis of hydride, the metal is migrated to the positive electrode or cathode, and hydrogen is migrated to the negative electrode or anode.

Potassium oxide

Potassium reacts readily with oxygen to form a number of binary compounds like monoxide (K2O), peroxide (K2O2), and superoxide (KO2). The stability of the superoxides increases with the increasing atomic size of the cations. The peroxide is prepared by oxidation of metal in liquid ammonia by oxygen. It is used to restore oxygen in submarines and space capsules for driver breathing apparatus.

Potassium hydroxide

Potassium hydroxide (KOH) is a very strong base with a high pH scale. It is a white crystalline solid soluble in water and alcohol. The melting point of alkali hydroxides decreases with the increasing atomic number of alkali metals. Measurement of proton affinities of alkali hydroxides suggests that the base strength increases from LiOH to CsOH.

Potassium halide

Potassium halides are colorless, crystalline solids with high melting, boiling point, and high conductivity in the fused state. They all may be prepared by reacting KOH or K2CO3 with appropriate hydrogen halide. For a given cation the lattice energy decreases from lithium to cesium and for a given alkali metal the lattice energies decrease from fluorine to iodine. All the alkali metal halides crystalize as a face-centered cubic crystal lattice.

What is Potassium used for?

For most of the soil, K+ ion is an essential component of plant nutrition. Potassium chloride (KCl) is an important compound that is used in different types of fertilizers to grow the production of crops. Agricultural fertilizers consume 90 percent of the global production of metal in the form of KCl. It forms Na-K alloy which is used in the heat exchanger in breeder reactors.

Many compounds like KCl, KOH, K2CO3, KNO3, KClO3, KBr, and KMnO4 are used in different types of chemical industries.

Potassium Compounds Uses
KCl used in important fertilizers like muriate of potash (MOP).
KOH used in rubber processing, and preparation of potassium phosphate.
K2CO3 used in decorative glass, color TV tubes, textiles, dyes, and pigment industries.
KClO3 used in explosives and matches.
KBr used in photography.
KMnO4 oxidizing agent or bleaching agent.

It is direct burning in the air or oxygen to form KO2, which is used in oxygen supplements for submarines and space capsules.

Biological function

The function of sodium and potassium to penetrate the cell membrane differs due to their ionic size. The metals also differ in their transport mechanism and efficiency to activate enzymes. Potassium occurs at a high concentration inside the cell but sodium occurs at a lower concentration inside the cell.

Potassium is used mainly to activate many enzymes, the transmission of nerve signals, and participation in the oxidation of glucose to produce adenosine triphosphate (ATP).