Home Element Metal Iron

Iron

Iron element

Iron is a chemical element, silvery-white, lustrous, malleable, and ductile metal of Group 8 (VIIIB) of the periodic table with symbol Fe and atomic number 26. The most used and cheapest metal which is used by the human civilization much later than copper, silver, and gold. In learning chemistry, the chemical element iron is included in the transition metals family due to the presence of incompletely filled d-orbitals in their atomic or ionic state. The name comes from old English while the symbol of iron comes from the Latin word Ferrum.

Position of transition metal iron in the periodic table

Physical and chemical properties

Physical properties of iron

Iron has four allotropic crystal lattice like α-Fe (bcc ferromagnetic), β-Fe (bcc paramagnetic), γ-Fe (fcc paramagnetic), and δ-Fe (bcc paramagnetic). It is the most magnetic substance among all elements and moderately chemically active metal in the earth’s environment.

Iron element or metal symbol, physical and chemical properties, facts, production, uses and position in periodic table

Chemical properties of iron

The second most abundant metal, iron has the valence electronic configuration [Ar] 3d6 4s2, and common oxidation number +2 and +3. Some physical and chemical properties of iron are given below the table,

Physical and chemical properties of iron
Chemical symbol Fe
Atomic number 26
Atomic weight 55.847
Electronic configuration [Ar] 3d6 6s2
Meting point 1538 °C
Boiling point 2862 °C
Density 7.874 gm/cm3
Molar heat capacity 25.10 J mol-1 K-1
Oxidation states +2 and +3
Electronegativity 1.83 (Pauling scale)
Ionization energy 1st – 762.5 kJ/mol
2nd – 1561.9 kJ/mol
3rd – 2957 kJ/mol
Crystal structure body centered (bcc) or ​face-centered cubic (fcc)
Electrical resistivity 96.10 nΩ⋅m at 20 °C

History of iron

It is joined in the race of human civilization before copper, silver, and gold and was first used by our forefathers around 4000 B.C. The knowledge of extracting iron from its different types of ore developed in different countries at a long interval of time. In Egypt and Mesopotamia, the process was discovered about 2000 B.C. Early methods of heating ores with coal on windy sites yielded spongy metal shaped by prolonged hammering. The technique for making good quality metal was developed by using a furnace. In modern times, smelting furnaces have become well developed. Improvement of mechanical strength by making steel from iron ores was coming in the nineteenth century.

Where is iron found?

Iron is the second most abundant metal after aluminum and the fourth most abundant chemical element after oxygen, silicon, and aluminum in the earth’s crust occurring to an extent of more than 5 percent or 50,000 ppm. In the earth’s crust, the free metal is rare, terrestrial iron in basaltic rocks found in Greenland. Carbonaceous sediments are found in the United States (Missouri). About 0.5 percent of lunar soil consists of metallic iron, which means a vast quantity of Fe present on the moon’s surface.

Ores of iron and their formula

Iron occurs mostly in oxide ores like red hematite (Fe2O3), brown hematite, or limonite (2F2O3, 3H2O), and magnetite (Fe2O3), other minerals included siderite (FeCO3), and pyrites (FeS2). Pyrites cannot be economical to produce Fe and hence pyrites are not considered an ore of Fe. The ores are found in different countries like China, Brazil, Australia, United States, and India, and 1000 million tonnes of iron are produced per year all over the world. The production of crude steel after 1996 over the world around 700 million tonnes.

Isotopes

Iron occurs in nature by four stable isotopes like 54Fe (5.845 percent), 56Fe (91.754 percent), 57Fe (2.119 percent), and 58Fe (0.282 percent).

Production process

Iron is extracted through carbon reduction in a blast furnace. The ore, coke, and limestone (usually ratio 8:4:1) enter the top of the furnace while a blast of preheated air about 900 °C is brown through the holes near the bottom. The burning of coke produces heat near the base with a temperature near 2000 °C and falls gradually towards the top of the furnace (400 °C). Burning of carbon above 700 °C produces carbon monoxide which rises upward and reduces Fe2O3 and FeO. Some reduction is done by carbon. The limestone decomposes around 900 °C to give CaO which combines with silica to form slag (CaSiO3).

What is pig iron?

The molten slug and crude metal collect at the base of the blast furnace where they form separate layers and the slug floats on molten metal, preventing it from oxidation. These are drowned through separate holes and allowed to solidify in the sand mold to form pig or cast iron which contain impurities like carbon, silicon, phosphorus, sulfur, and manganese. When most of the impurities present in pig-Fe are removed, the pure commercial form of metal is formed, known as wrought iron.

Interesting facts about iron

  • Pure iron is chemically moderately active, silvery-white lustrous, malleable, ductile metal, and the most magnetic substance among all periodic table elements.
  • The finely divided metal is pyrophoric in the air at room temperature.
  • Water can reacts above 500 °C liberating hydrogen and forming Fe2O3 and FeO.
  • In a heated finely divided state, it reacts with all the nonmetals (carbon, silicon, nitrogen, phosphorus, and hydrogen) to form solid metal-like compounds, Fe3C, Fe3Si, Fe3P, Fe4N, FeN, or binary ionic to covalent compounds like FeF3, FeCl3, FeS. The hard crystalline solid carbide Fe3C (cementite) is mainly responsible for the variation of properties of steel.
  • In absence of oxygen, iron reacts with mineral acids (sulfuric acid, hydrochloric acid, or nitric acid) to give Fe(II) ion in solution.  Dilute alkali solutions and air-free water hardly attics Fe but hot concentrated alkali hydroxides attack it.

Chemical compounds

In chemistry, iron has characteristic properties of transition metals with various oxidation states and various types of coordination and organometallic chemical compounds in different types of chemical bonding. +2 (ferrous) and +3 (ferric) oxidation states are the main oxidation states of Fe to form a wide number of compounds in chemistry. In Fe (II), it forms simple compounds like oxides, halides (except iodine), and other salts, together with a large number of complex compounds. FeF3, FeCl3, and FeBr3 are the halides of Fe, formed by direct reaction of metals with respective halogens like fluorine, chlorine, and bromine.

Fe(II) is, in general, reducing in nature to form a large number of simple and complex compounds that are quite stable in +2 state. The halides, nitrate, perchlorate, and sulfate are soluble in water but the hydroxide, carbonate, phosphate, and oxalate are sparingly soluble. It occurs in a higher oxidation state in purple potassium ferrate (KFeO4) with +6 oxidation state, obtained by oxidation of Fe(III) by hydrochloric acid.

What is iron used for?

  • Iron and steel are used mainly in the different types of structural units in modern civilization and civil engineering. There are different types of steel with different properties and uses, manufacture by alloyed iron with carbon and other chemical elements. Mild steel is most widely used in bridges, electricity pylons, bicycle chains, cutting tools, and rifle barrels.
  • It is also used as a chemical catalyst in the Haber process for the production of ammonia, in small-scale production of hydrogen, it is used as a reducing agent.
  • Stainless steel is an important alloy of iron that contains at least 12 to 15 percent chromium and other metals such as nickel, molybdenum, titanium, and copper which resist corrosion and action of acids. It is widely used in architecture, bearings, cutlery, medicinal surgical instruments, and jewelry.
  • Cast iron is another alloy that contains 3 to 5 percent carbon, widely used in pipes, valves, pumps, and the production of the magnet.

Function of iron in the body

It is an essential non-toxic chemical element for all forms of life (plants and animals). A lot of iron ion is present in the hemoglobin of blood which carries oxygen from the lungs to the cell for the respiration of the body.

Deficiency of iron

The deficiency of iron in the human body causes anemia which is the most common neutralization disorder all over the world, in both developed and underdeveloped countries. Chronic blood loss, repeated pregnancy, and hookworm infarction may cause anemia in the human body. Anemia is characterized by a lower concentration of iron in hemoglobin of blood (<12mg/liter), causes retired growth, loss of appetite, sluggish metabolic activities, and dull or inactive attitude.